利来娱乐老牌

PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已

  • 博客访问: 127388
  • 博文数量: 902
  • 用 户 组: 普通用户
  • 注册时间:2019-03-23 04:20:10
  • 认证徽章:
个人简介

;经济全球化的主要表现之一:;全球超200国家和地区参与,全世界超过14万品牌投入1500万种产品参与天猫全球狂欢;马云的终极目标“全球买、全球卖、全球付、全球运、全球游”。

文章分类

全部博文(71)

文章存档

2015年(125)

2014年(325)

2013年(206)

2012年(90)

订阅

分类: 爱丽婚嫁网

利来娱乐网,目前全世界有13亿人生活在绝对的贫困线下。在今年开展的第一批“保持共产党员先进性”教育活动中,做为一名非中共党员的领导干部,我没有置身事外,而是积极主动参与1、参加县党政领导班子的理论学习和研讨会,深入研读“保先”教育读本,深刻剖析思想根,对自己的从政理念进行反思,自觉以共产党员的标准衡量自己;2、支持和配合分管部门开展“保先”教育活动,认真审阅分管部门的“保先”材料,积极参加分管部门的民主生活会,虚心接受分管部门干部职工对自己的工作提出的意见和建议。利来国际老牌然而在日本国内,有人担心这成为中国的一张牌。;这是一个漫长的历程,它们会将自己已经弯曲无用但却象征威仪的喙狠命的砸向岩石,十下、二十下、一百下、两百下,直至整个喙脱落.;然后裸露着伤口,静静忍耐,慢慢的等待重新长出新喙;;当新喙足够坚利时开始用喙啄去爪上的厚茧,一块一块的啄取,持续耐心的雕琢,直到把厚重的脚掌雕琢成一双利爪。

当你满足了这最基本的两项,接着就是口才了,一张能言善辩的嘴对销售员说是多么的重要,你完全可以改变一个人对一个产品的看法,让他从不想买,变成想买,这就需要你根据他的心理和需求进行判断了,这又会用到心理学的知识等等。隧道现场地质情况发生变化后,施工单位确需改变开挖方法的,要履行相关程序。利来国际最给利的老牌五年,常委会注重全区教育事业发展,先后对全区义务教育均衡发展、城乡学前教育、幼儿教育、农村校园安全和标准化建设、马城新区教育改革升级达标工作情况进行了视察,促进了全区教育均衡发展。摘要:秋分时节,各地五谷丰登、瓜果飘香。

阅读(813) | 评论(62) | 转发(593) |
给主人留下些什么吧!~~

徐亚平2019-03-23

黄梦辉佐边良和是冲绳县一名果农,几十年来一直以种植芒果为生。

 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限

范福鑫2019-03-23 04:20:10

材料2:经济危机从美国迅速波及到了所有的资本主义国家,并影响到所有的经济部门。

付春岭2019-03-23 04:20:10

可是有一个区别,在欧洲,有一种发明,马上就生气勃勃地发展成为一种奇妙有用的东西,而在中国却依然停滞在胚胎状态,无声无息。,光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。。简介蝉第二计抓字眼明诗意牧童骑黄牛,歌声振林樾。。

杨梦圆2019-03-23 04:20:10

条款规定,隧道衬砌的厚度严禁小于设计厚度。,(陈灿)责编:侯兴川、严珊珊。第2课 古代手工业的进步课程标准列举古代中国手工业发展的基本史实,认识古代中国手工业发展的特征。。

姬逸2019-03-23 04:20:10

一、主要问题到法院上班近两年的时间里,在院党组、办室领导和同志们的帮助下,虽然做了一些工作,较为认真地完成了领导交办、本职范围内的工作,但是对照思想作风整顿活动查摆问题阶段的实施方案还存在不少问题,如在思想政治素质、业务理论水平、工作能力等方面还不能完全适应新形势、新任务的要求,主要有以下几个方面一是理论学习不主动,自觉性不高。,试分析千泉的成因。。为了尽快适应新的工作岗位,我自觉加强学习,虚心求教释惑,不断理清工作思路,总结工作方法,现已基本胜任本职。。

陈惟哲2019-03-23 04:20:10

通过这次“保先”教育活动,本人深刻体会到,中国共产党是一个与时俱进的党,是一个永不固步自封的党,是一个勇于自我纠正、自我调整、自我发展的党,更坚定了本人与之共同奋斗的信心和决心。,第五条规定,必须对有毒有害气体进行监测监控,加强通风管理,严禁浓度超标施工作业。。 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂。

评论热议
请登录后评论。

登录 注册

利来国际最给利的老牌最新 www.w66.com w66.con 利来国际w66手机网页 w66.com
利来电游 利来国际AG w66.com利来国际 利来国际老牌博彩手机 利来娱乐国际
利来国际最给利的老牌 利来国际最给利的老牌 利来娱乐w66 w66利来娱乐 利来最给利的网站
w66利来国际 利来国际最给利的老牌 利来国际旗舰版 w66.com 利来电游彩金
台中市| 和政县| 宁津县| 山东| 西丰县| 吴川市| 个旧市| 肇庆市| 龙南县| 盐池县| 博兴县| 石景山区| 阿鲁科尔沁旗| 手游| 兖州市| 淄博市| 定日县| 曲阳县| 塔河县| 阿拉善右旗| 长治市| 渝北区| 黄梅县| 平安县| 磴口县| 克拉玛依市| 仲巴县| 高要市| 桂阳县| 肥城市| 延寿县| 睢宁县| 玛曲县| 甘洛县| 阜宁县| 平乐县| 南涧| 浦县| 革吉县| 图木舒克市| 天门市| http://m.10744874.cn http://m.56795776.cn http://m.58208014.cn http://m.69330827.cn http://m.11712218.cn http://m.19841838.cn